Share
Given Q(x) = 7x − 3 and P(x) = 7×3 − 3×2 + 42x − 27, find P(x) Q(x) . (Divide using long division.)
Question
Given Q(x) = 7x − 3 and P(x) = 7×3 − 3×2 + 42x − 27, find P(x) Q(x) . (Divide using long division.)
in progress
0
Mathematics
4 years
2021-07-24T04:32:19+00:00
2021-07-24T04:32:19+00:00 1 Answers
7 views
0
Answers ( )
Complete question:
Given Q(x) = 7x − 3 and P(x) = 7×3 − 3×2 + 42x − 27, find P(x) ÷ Q(x) . (Divide using long division.)
Answer:
The quotient = x² + 6 and the remainder = – 9
Step-by-step explanation:
Given;
Q(x) = 7x − 3
P(x) = 7x³ − 3x² + 42x − 27
To divide P(x) by Q(x) using long division, we apply the following method;
x² + 6
———————————
7x − 3 √ 7x³ − 3x² + 42x − 27
− (7x³ – 3x²)
————————————-
42x − 27
− (42x − 18)
—————————————-
− 9
The quotient = x² + 6 and the remainder = – 9