Given Q(x) = 7x − 3 and P(x) = 7×3 − 3×2 + 42x − 27, find P(x) Q(x) . (Divide using long division.)

Question

Given Q(x) = 7x − 3 and P(x) = 7×3 − 3×2 + 42x − 27, find P(x) Q(x) . (Divide using long division.)

in progress 0
Thành Công 4 years 2021-07-24T04:32:19+00:00 1 Answers 7 views 0

Answers ( )

    0
    2021-07-24T04:33:20+00:00

    Complete question:

    Given Q(x) = 7x − 3 and P(x) = 7×3 − 3×2 + 42x − 27, find P(x) ÷ Q(x) . (Divide using long division.)

    Answer:

    \frac{7x^3 \ - \ 3x^2 \ + \ 42x \  - \ 27}{7x \ - \ 3} = \ \ x^2  +  6 \ \ \frac{-9}{7x \ - \ 3}

    The quotient = x²  + 6 and the remainder = – 9

    Step-by-step explanation:

    Given;

    Q(x) = 7x − 3

    P(x) = 7x³ − 3x² + 42x − 27

    To divide P(x) by Q(x) using long division, we apply the following method;

                                     

                                          x²  + 6

                                      ———————————

                      7x − 3   √ 7x³ − 3x² + 42x − 27

                                   − (7x³ – 3x²)

                                   ————————————-

                                                   42x − 27

                                               − (42x  − 18)

                                   —————————————-

                                                           − 9

    Therefore, \ \frac{7x^3 \ - \ 3x^2 \ + \ 42x \  - \ 27}{7x \ - \ 3} = \ \ x^2  +  6 \ \ \frac{-9}{7x \ - \ 3}

    The quotient = x²  + 6 and the remainder = – 9

                                   

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )