Nem 947 Questions 2k Answers 0 Best Answers 23 Points View Profile0 Nem Asked: Tháng Mười Một 26, 20202020-11-26T09:53:00+00:00 2020-11-26T09:53:00+00:00In: Môn ToánGiúp mình nha! Mình cảm ơn nhiều☪➶0Giúp mình nha! Mình cảm ơn nhiều☪➶ ShareFacebookRelated Questions GIẢI GIÚP MÌNH BÀI NÀY VỚI: a, So sánh: M = $\frac{2019.201.101.301}{-2018.701.501}$ và N = $\frac{-301.101.201.2019}{501.701.2018}$ b, Cho ... Hãy tạo dáng và trang trí thời trang ( đừng lấy ảnh mạng hay vẽ theo mạng nha) hãy kể tên một số hệ điều hành mà em biết ?1 AnswerOldestVotedRecentNick 878 Questions 2k Answers 0 Best Answers 15 Points View Profile Nick 2020-11-26T09:54:03+00:00Added an answer on Tháng Mười Một 26, 2020 at 9:54 sáng Giải thích các bước giải:Ta có: Bài 1:Các biểu thức đã cho có nghĩa khi:\(\begin{array}{l}a,\\ – 2x – 3 \ge 0 \Leftrightarrow 2x + 3 \le 0 \Leftrightarrow x \le – \dfrac{3}{2}\\b,\\\left\{ \begin{array}{l}\dfrac{{ – 1}}{x} \ge 0\\x \ne 0\end{array} \right. \Leftrightarrow x < 0\\c,\\\left\{ \begin{array}{l}x – 7 > 0\\x – 3 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 7\\x \ge 3\end{array} \right. \Leftrightarrow x > 7\\d,\\{x^2} – 5x + 4 \ge 0 \Leftrightarrow \left( {x – 1} \right)\left( {x – 4} \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \ge 4\\x \le 1\end{array} \right.\\2,\\a,\\\left( {\dfrac{{2\sqrt 3 + \sqrt 6 }}{{\sqrt 8 + 2}}} \right):\sqrt 6 = \left( {\dfrac{{\sqrt 3 \left( {2 + \sqrt 2 } \right)}}{{\sqrt 2 .\left( {\sqrt 4 + \sqrt 2 } \right)}}} \right):\sqrt 6 \\ = \left( {\dfrac{{\sqrt 3 \left( {2 + \sqrt 2 } \right)}}{{\sqrt 2 \left( {2 + \sqrt 2 } \right)}}} \right):\sqrt 6 = \dfrac{{\sqrt 3 }}{{\sqrt 2 }}:\sqrt 6 = \dfrac{1}{2}\\b,\\\left( {\sqrt 3 – 1} \right).\sqrt {4 + 2\sqrt 3 } = \left( {\sqrt 3 – 1} \right).\sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} = \left( {\sqrt 3 – 1} \right)\left( {\sqrt 3 + 1} \right) = 2\\c,\\\sqrt[3]{{ – 125}} – \sqrt[3]{{27}} – \sqrt[4]{{64}} = \left( { – 5} \right) – 3 – 4 = – 12\\d,\\\sqrt {ab} + 2\sqrt a + 3\sqrt b + 6 = \left( {\sqrt {ab} + 2\sqrt a } \right) + \left( {3\sqrt b + 6} \right)\\ = \sqrt a \left( {\sqrt b + 2} \right) + 3\left( {\sqrt b + 2} \right)\\ = \left( {\sqrt b + 2} \right)\left( {\sqrt a + 3} \right)\\3,\\a,\\\sqrt {{{\left( {2x – 3} \right)}^2}} = 5\\ \Leftrightarrow \left| {2x – 3} \right| = 5 \Leftrightarrow \left[ \begin{array}{l}2x – 3 = 5\\2x – 3 = – 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = – 1\end{array} \right.\\b,\\\sqrt {64x + 64} – \sqrt {25x + 25} + \sqrt {4x + 4} = 20\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x \ge – 1} \right)\\ \Leftrightarrow \sqrt {64\left( {x + 1} \right)} – \sqrt {25\left( {x + 1} \right)} + \sqrt {4\left( {x + 1} \right)} = 20\\ \Leftrightarrow 8\sqrt {x + 1} – 5\sqrt {x + 1} + 2\sqrt {x + 1} = 20\\ \Leftrightarrow 5\sqrt {x + 1} = 20\\ \Leftrightarrow \sqrt {x + 1} = 4\\ \Leftrightarrow x = 15\\4,\\a,\\DKXD:\,\,\,\left\{ \begin{array}{l}x > 0\\x \ne 1\end{array} \right.\\P = \left( {\dfrac{{\sqrt x }}{{\sqrt x – 1}} – \dfrac{1}{{x – \sqrt x }}} \right):\left( {\dfrac{1}{{\sqrt x + 1}} + \dfrac{2}{{x – 1}}} \right)\\ = \left( {\dfrac{{\sqrt x }}{{\sqrt x – 1}} – \dfrac{1}{{\sqrt x \left( {\sqrt x – 1} \right)}}} \right):\left( {\dfrac{1}{{\sqrt x + 1}} + \dfrac{2}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}} \right)\\ = \dfrac{{{{\sqrt x }^2} – 1}}{{\left( {\sqrt x – 1} \right).\sqrt x }}:\dfrac{{\left( {\sqrt x – 1} \right) + 2}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x – 1} \right)}}\\ = \dfrac{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x – 1} \right).\sqrt x }}:\dfrac{{\sqrt x + 1}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x – 1} \right)}}\\ = \dfrac{{\sqrt x + 1}}{{\sqrt x }}:\dfrac{1}{{\sqrt x – 1}}\\ = \dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x – 1} \right)}}{{\sqrt x }}\\ = \dfrac{{x – 1}}{{\sqrt x }}\\b,\\P < 0 \Leftrightarrow \dfrac{{x – 1}}{{\sqrt x }} < 0 \Leftrightarrow x – 1 < 0 \Leftrightarrow 0 < x < 1\\c,\,\,\,\,\,x = 4 – 2\sqrt 3 = {\left( {\sqrt 3 – 1} \right)^2} \Rightarrow \sqrt x = \sqrt 3 – 1\\P = \dfrac{{x – 1}}{{\sqrt x }} = \dfrac{{\left( {4 – 2\sqrt 3 } \right) – 1}}{{\sqrt 3 – 1}} = \dfrac{{3 – 2\sqrt 3 }}{{\sqrt 3 – 1}}\end{array}\)0Reply Share ShareShare on FacebookLeave an answerLeave an answerHủy By answering, you agree to the Terms of Service and Privacy Policy .* Lưu tên của tôi, email, và trang web trong trình duyệt này cho lần bình luận kế tiếp của tôi.
Nick
Giải thích các bước giải:
Ta có:
Bài 1:
Các biểu thức đã cho có nghĩa khi:
\(\begin{array}{l}
a,\\
– 2x – 3 \ge 0 \Leftrightarrow 2x + 3 \le 0 \Leftrightarrow x \le – \dfrac{3}{2}\\
b,\\
\left\{ \begin{array}{l}
\dfrac{{ – 1}}{x} \ge 0\\
x \ne 0
\end{array} \right. \Leftrightarrow x < 0\\
c,\\
\left\{ \begin{array}{l}
x – 7 > 0\\
x – 3 \ge 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x > 7\\
x \ge 3
\end{array} \right. \Leftrightarrow x > 7\\
d,\\
{x^2} – 5x + 4 \ge 0 \Leftrightarrow \left( {x – 1} \right)\left( {x – 4} \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}
x \ge 4\\
x \le 1
\end{array} \right.\\
2,\\
a,\\
\left( {\dfrac{{2\sqrt 3 + \sqrt 6 }}{{\sqrt 8 + 2}}} \right):\sqrt 6 = \left( {\dfrac{{\sqrt 3 \left( {2 + \sqrt 2 } \right)}}{{\sqrt 2 .\left( {\sqrt 4 + \sqrt 2 } \right)}}} \right):\sqrt 6 \\
= \left( {\dfrac{{\sqrt 3 \left( {2 + \sqrt 2 } \right)}}{{\sqrt 2 \left( {2 + \sqrt 2 } \right)}}} \right):\sqrt 6 = \dfrac{{\sqrt 3 }}{{\sqrt 2 }}:\sqrt 6 = \dfrac{1}{2}\\
b,\\
\left( {\sqrt 3 – 1} \right).\sqrt {4 + 2\sqrt 3 } = \left( {\sqrt 3 – 1} \right).\sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} = \left( {\sqrt 3 – 1} \right)\left( {\sqrt 3 + 1} \right) = 2\\
c,\\
\sqrt[3]{{ – 125}} – \sqrt[3]{{27}} – \sqrt[4]{{64}} = \left( { – 5} \right) – 3 – 4 = – 12\\
d,\\
\sqrt {ab} + 2\sqrt a + 3\sqrt b + 6 = \left( {\sqrt {ab} + 2\sqrt a } \right) + \left( {3\sqrt b + 6} \right)\\
= \sqrt a \left( {\sqrt b + 2} \right) + 3\left( {\sqrt b + 2} \right)\\
= \left( {\sqrt b + 2} \right)\left( {\sqrt a + 3} \right)\\
3,\\
a,\\
\sqrt {{{\left( {2x – 3} \right)}^2}} = 5\\
\Leftrightarrow \left| {2x – 3} \right| = 5 \Leftrightarrow \left[ \begin{array}{l}
2x – 3 = 5\\
2x – 3 = – 5
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 4\\
x = – 1
\end{array} \right.\\
b,\\
\sqrt {64x + 64} – \sqrt {25x + 25} + \sqrt {4x + 4} = 20\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x \ge – 1} \right)\\
\Leftrightarrow \sqrt {64\left( {x + 1} \right)} – \sqrt {25\left( {x + 1} \right)} + \sqrt {4\left( {x + 1} \right)} = 20\\
\Leftrightarrow 8\sqrt {x + 1} – 5\sqrt {x + 1} + 2\sqrt {x + 1} = 20\\
\Leftrightarrow 5\sqrt {x + 1} = 20\\
\Leftrightarrow \sqrt {x + 1} = 4\\
\Leftrightarrow x = 15\\
4,\\
a,\\
DKXD:\,\,\,\left\{ \begin{array}{l}
x > 0\\
x \ne 1
\end{array} \right.\\
P = \left( {\dfrac{{\sqrt x }}{{\sqrt x – 1}} – \dfrac{1}{{x – \sqrt x }}} \right):\left( {\dfrac{1}{{\sqrt x + 1}} + \dfrac{2}{{x – 1}}} \right)\\
= \left( {\dfrac{{\sqrt x }}{{\sqrt x – 1}} – \dfrac{1}{{\sqrt x \left( {\sqrt x – 1} \right)}}} \right):\left( {\dfrac{1}{{\sqrt x + 1}} + \dfrac{2}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}} \right)\\
= \dfrac{{{{\sqrt x }^2} – 1}}{{\left( {\sqrt x – 1} \right).\sqrt x }}:\dfrac{{\left( {\sqrt x – 1} \right) + 2}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x – 1} \right)}}\\
= \dfrac{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x – 1} \right).\sqrt x }}:\dfrac{{\sqrt x + 1}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x – 1} \right)}}\\
= \dfrac{{\sqrt x + 1}}{{\sqrt x }}:\dfrac{1}{{\sqrt x – 1}}\\
= \dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x – 1} \right)}}{{\sqrt x }}\\
= \dfrac{{x – 1}}{{\sqrt x }}\\
b,\\
P < 0 \Leftrightarrow \dfrac{{x – 1}}{{\sqrt x }} < 0 \Leftrightarrow x – 1 < 0 \Leftrightarrow 0 < x < 1\\
c,\,\,\,\,\,x = 4 – 2\sqrt 3 = {\left( {\sqrt 3 – 1} \right)^2} \Rightarrow \sqrt x = \sqrt 3 – 1\\
P = \dfrac{{x – 1}}{{\sqrt x }} = \dfrac{{\left( {4 – 2\sqrt 3 } \right) – 1}}{{\sqrt 3 – 1}} = \dfrac{{3 – 2\sqrt 3 }}{{\sqrt 3 – 1}}
\end{array}\)