Delwyn 935 Questions 1k Answers 0 Best Answers 16 Points View Profile0 Delwyn Asked: Tháng Mười Một 16, 20202020-11-16T12:16:55+00:00 2020-11-16T12:16:55+00:00In: Môn Toángiúp mình hai phần này với :v0giúp mình hai phần này với :v ShareFacebookRelated Questions Где быстро занять денег? Một hình thang có đáy lớn là 52cm ; đáy bé kém đáy lớn 16cm ; chiều cao kém đáy ... Useful news and important articles1 AnswerOldestVotedRecentEuphemia 940 Questions 1k Answers 0 Best Answers 24 Points View Profile Euphemia 2020-11-16T12:18:02+00:00Added an answer on Tháng Mười Một 16, 2020 at 12:18 chiều Giải thích các bước giải:Ta có:\(\begin{array}{l}b,\\DKXD:\,\,\,\,\left\{ \begin{array}{l}2y – {y^2} \ge 0\\{x^2} – 6x + 9 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{y^2} – 2y \le 0\\{\left( {x – 3} \right)^2} \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y\left( {y – 2} \right) \le 0\\\forall x\end{array} \right. \Leftrightarrow 0 \le y \le 2\\\sqrt {2y – {y^2}} – \sqrt {{x^2} – 6x + 9} = 1\\ \Leftrightarrow \sqrt {1 – \left( {{y^2} – 2y + 1} \right)} – \sqrt {{{\left( {x – 3} \right)}^2}} = 1\\ \Leftrightarrow \sqrt {1 – {{\left( {y – 1} \right)}^2}} – \left| {x – 3} \right| = 1\\ \Leftrightarrow \sqrt {1 – {{\left( {y – 1} \right)}^2}} = 1 + \left| {x – 3} \right|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\{\left( {y – 1} \right)^2} \ge 0,\,\,\,\forall y \Rightarrow 1 – {\left( {y – 1} \right)^2} \le 1,\,\,\,\forall y\\ \Rightarrow \sqrt {1 – {{\left( {y – 1} \right)}^2}} \le 1,\,\,\,\forall y\\\left| {x – 3} \right| \ge 0,\,\,\,\forall x \Rightarrow 1 + \left| {x – 3} \right| \ge 1,\,\,\,\forall x\\ \Rightarrow \sqrt {1 – {{\left( {y – 1} \right)}^2}} \le 1 \le 1 + \left| {x – 3} \right|\\\left( 1 \right) \Rightarrow \left\{ \begin{array}{l}\sqrt {1 – {{\left( {y – 1} \right)}^2}} = 1\\1 + \left| {x – 3} \right| = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {y – 1} \right)^2} = 0\\\left| {x – 3} \right| = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 1\\x = 3\end{array} \right.\\c,\\x + y + z = 2\sqrt {x – 2} + 2\sqrt {y + 6} + 2\sqrt {z – 7} \,\,\,\,\,\,\,\,\,\,\left( \begin{array}{l}x \ge 2\\y \ge – 6\\z \ge 7\end{array} \right)\\ \Leftrightarrow x + y + z – 2\sqrt {x – 2} – 2\sqrt {y + 6} – 2\sqrt {z – 7} = 0\\ \Leftrightarrow \left( {x – 1 – 2\sqrt {x – 2} } \right) + \left( {y + 7 – 2\sqrt {y + 6} } \right) + \left( {z – 6 – 2\sqrt {z – 7} } \right) = 0\\ \Leftrightarrow \left[ {\left( {x – 2} \right) – 2\sqrt {x – 2} + 1} \right] + \left[ {\left( {y + 6} \right) – 2\sqrt {y + 6} + 1} \right] + \left[ {\left( {z – 7} \right) – 2\sqrt {z – 7} + 1} \right] = 0\\ \Leftrightarrow {\left( {\sqrt {x – 2} – 1} \right)^2} + {\left( {\sqrt {y + 6} – 1} \right)^2} + {\left( {\sqrt {z – 7} – 1} \right)^2} = 0\\ \Rightarrow \left\{ \begin{array}{l}{\left( {\sqrt {x – 2} – 1} \right)^2} = 0\\{\left( {\sqrt {y + 6} – 1} \right)^2} = 0\\{\left( {\sqrt {z – 7} – 1} \right)^2} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\sqrt {x – 2} = 1\\\sqrt {y + 6} = 1\\\sqrt {z – 7} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = – 5\\z = 8\end{array} \right.\end{array}\)0Reply Share ShareShare on FacebookLeave an answerLeave an answerHủy By answering, you agree to the Terms of Service and Privacy Policy .* Lưu tên của tôi, email, và trang web trong trình duyệt này cho lần bình luận kế tiếp của tôi.
Euphemia
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
b,\\
DKXD:\,\,\,\,\left\{ \begin{array}{l}
2y – {y^2} \ge 0\\
{x^2} – 6x + 9 \ge 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{y^2} – 2y \le 0\\
{\left( {x – 3} \right)^2} \ge 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
y\left( {y – 2} \right) \le 0\\
\forall x
\end{array} \right. \Leftrightarrow 0 \le y \le 2\\
\sqrt {2y – {y^2}} – \sqrt {{x^2} – 6x + 9} = 1\\
\Leftrightarrow \sqrt {1 – \left( {{y^2} – 2y + 1} \right)} – \sqrt {{{\left( {x – 3} \right)}^2}} = 1\\
\Leftrightarrow \sqrt {1 – {{\left( {y – 1} \right)}^2}} – \left| {x – 3} \right| = 1\\
\Leftrightarrow \sqrt {1 – {{\left( {y – 1} \right)}^2}} = 1 + \left| {x – 3} \right|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\
{\left( {y – 1} \right)^2} \ge 0,\,\,\,\forall y \Rightarrow 1 – {\left( {y – 1} \right)^2} \le 1,\,\,\,\forall y\\
\Rightarrow \sqrt {1 – {{\left( {y – 1} \right)}^2}} \le 1,\,\,\,\forall y\\
\left| {x – 3} \right| \ge 0,\,\,\,\forall x \Rightarrow 1 + \left| {x – 3} \right| \ge 1,\,\,\,\forall x\\
\Rightarrow \sqrt {1 – {{\left( {y – 1} \right)}^2}} \le 1 \le 1 + \left| {x – 3} \right|\\
\left( 1 \right) \Rightarrow \left\{ \begin{array}{l}
\sqrt {1 – {{\left( {y – 1} \right)}^2}} = 1\\
1 + \left| {x – 3} \right| = 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{\left( {y – 1} \right)^2} = 0\\
\left| {x – 3} \right| = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
y = 1\\
x = 3
\end{array} \right.\\
c,\\
x + y + z = 2\sqrt {x – 2} + 2\sqrt {y + 6} + 2\sqrt {z – 7} \,\,\,\,\,\,\,\,\,\,\left( \begin{array}{l}
x \ge 2\\
y \ge – 6\\
z \ge 7
\end{array} \right)\\
\Leftrightarrow x + y + z – 2\sqrt {x – 2} – 2\sqrt {y + 6} – 2\sqrt {z – 7} = 0\\
\Leftrightarrow \left( {x – 1 – 2\sqrt {x – 2} } \right) + \left( {y + 7 – 2\sqrt {y + 6} } \right) + \left( {z – 6 – 2\sqrt {z – 7} } \right) = 0\\
\Leftrightarrow \left[ {\left( {x – 2} \right) – 2\sqrt {x – 2} + 1} \right] + \left[ {\left( {y + 6} \right) – 2\sqrt {y + 6} + 1} \right] + \left[ {\left( {z – 7} \right) – 2\sqrt {z – 7} + 1} \right] = 0\\
\Leftrightarrow {\left( {\sqrt {x – 2} – 1} \right)^2} + {\left( {\sqrt {y + 6} – 1} \right)^2} + {\left( {\sqrt {z – 7} – 1} \right)^2} = 0\\
\Rightarrow \left\{ \begin{array}{l}
{\left( {\sqrt {x – 2} – 1} \right)^2} = 0\\
{\left( {\sqrt {y + 6} – 1} \right)^2} = 0\\
{\left( {\sqrt {z – 7} – 1} \right)^2} = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\sqrt {x – 2} = 1\\
\sqrt {y + 6} = 1\\
\sqrt {z – 7} = 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 3\\
y = – 5\\
z = 8
\end{array} \right.
\end{array}\)