Orla Orla 941 Questions 2k Answers 0 Best Answers 24 Points View Profile0 Orla Orla Asked: Tháng Mười Một 25, 20202020-11-25T18:01:52+00:00 2020-11-25T18:01:52+00:00In: Môn ToánGiúp hộ mình vời ạ thank you0Giúp hộ mình vời ạ thank you ShareFacebookRelated Questions Где быстро занять денег? Một hình thang có đáy lớn là 52cm ; đáy bé kém đáy lớn 16cm ; chiều cao kém đáy ... Useful news and important articles1 AnswerOldestVotedRecentVerity 925 Questions 2k Answers 0 Best Answers 20 Points View Profile Verity 2020-11-25T18:03:42+00:00Added an answer on Tháng Mười Một 25, 2020 at 6:03 chiều Đáp án:B19:c. \(\left[ \begin{array}{l}x = 9\\x = 1\end{array} \right.\)Giải thích các bước giải:\(\begin{array}{l}B19:\\a.DK:x > 0;x \ne 1\\M = \left[ {\dfrac{{2x + 3\sqrt x + \sqrt x + 1 – x + \sqrt x – 1}}{{\left( {\sqrt x + 1} \right)\left( {x – \sqrt x + 1} \right)}}} \right].\dfrac{{x – \sqrt x + 1}}{{\sqrt x }}\\ = \dfrac{{x + 5\sqrt x }}{{\left( {\sqrt x + 1} \right)\left( {x – \sqrt x + 1} \right)}}.\dfrac{{x – \sqrt x + 1}}{{\sqrt x }}\\ = \dfrac{{\sqrt x + 5}}{{\sqrt x + 1}}\\b.M = \dfrac{{\sqrt x + 5}}{{\sqrt x + 1}} = \dfrac{{\sqrt x + 1 + 4}}{{\sqrt x + 1}} = 1 + \dfrac{4}{{\sqrt x + 1}}\\Do:\dfrac{4}{{\sqrt x + 1}} > 0\forall x > 0\\ \to 1 + \dfrac{4}{{\sqrt x + 1}} > 1\\ \to M > 1\\c.M = 1 + \dfrac{4}{{\sqrt x + 1}}\\M \in Z \Leftrightarrow \dfrac{4}{{\sqrt x + 1}} \in Z\\ \Leftrightarrow \sqrt x + 1 \in U\left( 4 \right)\\ \to \left[ \begin{array}{l}\sqrt x + 1 = 4\\\sqrt x + 1 = – 4\left( l \right)\\\sqrt x + 1 = 2\\\sqrt x + 1 = – 2\left( l \right)\\\sqrt x + 1 = 1\\\sqrt x + 1 = – 1\left( l \right)\end{array} \right. \to \left[ \begin{array}{l}x = 9\\x = 1\\x = 0\left( l \right)\end{array} \right.\\B20:\\a.DK:x \ge 0;x \ne \left\{ {1;9} \right\}\\P = \dfrac{{x – 3\sqrt x + 12}}{{\left( {\sqrt x – 3} \right)\left( {\sqrt x – 1} \right)}}:\dfrac{{\sqrt x + 3}}{{\sqrt x – 3}}\\ = \dfrac{{x – 3\sqrt x + 12}}{{\left( {\sqrt x – 3} \right)\left( {\sqrt x – 1} \right)}}.\dfrac{{\sqrt x – 3}}{{\sqrt x + 3}}\\ = \dfrac{{x – 3\sqrt x + 12}}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 3} \right)}}\\c.P = 2\\ \to \dfrac{{x – 3\sqrt x + 12}}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 3} \right)}} = 2\\ \to x – 3\sqrt x + 12 = 2\left( {x + 2\sqrt x – 3} \right)\\ \to x + 7\sqrt x – 18 = 0\\ \to \left( {\sqrt x – 2} \right)\left( {\sqrt x + 9} \right) = 0\\ \to \sqrt x – 2 = 0\left( {do:\sqrt x + 9 > 0\forall x > 0} \right)\\ \to x = 4\end{array}\)0Reply Share ShareShare on FacebookLeave an answerLeave an answerHủy By answering, you agree to the Terms of Service and Privacy Policy .* Lưu tên của tôi, email, và trang web trong trình duyệt này cho lần bình luận kế tiếp của tôi.
Verity
Đáp án:
B19:
c. \(\left[ \begin{array}{l}
x = 9\\
x = 1
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
B19:\\
a.DK:x > 0;x \ne 1\\
M = \left[ {\dfrac{{2x + 3\sqrt x + \sqrt x + 1 – x + \sqrt x – 1}}{{\left( {\sqrt x + 1} \right)\left( {x – \sqrt x + 1} \right)}}} \right].\dfrac{{x – \sqrt x + 1}}{{\sqrt x }}\\
= \dfrac{{x + 5\sqrt x }}{{\left( {\sqrt x + 1} \right)\left( {x – \sqrt x + 1} \right)}}.\dfrac{{x – \sqrt x + 1}}{{\sqrt x }}\\
= \dfrac{{\sqrt x + 5}}{{\sqrt x + 1}}\\
b.M = \dfrac{{\sqrt x + 5}}{{\sqrt x + 1}} = \dfrac{{\sqrt x + 1 + 4}}{{\sqrt x + 1}} = 1 + \dfrac{4}{{\sqrt x + 1}}\\
Do:\dfrac{4}{{\sqrt x + 1}} > 0\forall x > 0\\
\to 1 + \dfrac{4}{{\sqrt x + 1}} > 1\\
\to M > 1\\
c.M = 1 + \dfrac{4}{{\sqrt x + 1}}\\
M \in Z \Leftrightarrow \dfrac{4}{{\sqrt x + 1}} \in Z\\
\Leftrightarrow \sqrt x + 1 \in U\left( 4 \right)\\
\to \left[ \begin{array}{l}
\sqrt x + 1 = 4\\
\sqrt x + 1 = – 4\left( l \right)\\
\sqrt x + 1 = 2\\
\sqrt x + 1 = – 2\left( l \right)\\
\sqrt x + 1 = 1\\
\sqrt x + 1 = – 1\left( l \right)
\end{array} \right. \to \left[ \begin{array}{l}
x = 9\\
x = 1\\
x = 0\left( l \right)
\end{array} \right.\\
B20:\\
a.DK:x \ge 0;x \ne \left\{ {1;9} \right\}\\
P = \dfrac{{x – 3\sqrt x + 12}}{{\left( {\sqrt x – 3} \right)\left( {\sqrt x – 1} \right)}}:\dfrac{{\sqrt x + 3}}{{\sqrt x – 3}}\\
= \dfrac{{x – 3\sqrt x + 12}}{{\left( {\sqrt x – 3} \right)\left( {\sqrt x – 1} \right)}}.\dfrac{{\sqrt x – 3}}{{\sqrt x + 3}}\\
= \dfrac{{x – 3\sqrt x + 12}}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 3} \right)}}\\
c.P = 2\\
\to \dfrac{{x – 3\sqrt x + 12}}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 3} \right)}} = 2\\
\to x – 3\sqrt x + 12 = 2\left( {x + 2\sqrt x – 3} \right)\\
\to x + 7\sqrt x – 18 = 0\\
\to \left( {\sqrt x – 2} \right)\left( {\sqrt x + 9} \right) = 0\\
\to \sqrt x – 2 = 0\left( {do:\sqrt x + 9 > 0\forall x > 0} \right)\\
\to x = 4
\end{array}\)