giúp em 4 sinx + 3 cosx=5 Question giúp em 4 sinx + 3 cosx=5 in progress 0 Môn Toán Latifah 4 years 2020-11-25T00:42:21+00:00 2020-11-25T00:42:21+00:00 2 Answers 56 views 0
Answers ( )
Đáp án:
$\text{x = $\dfrac{\pi}{2}$ – $\alpha$+ k2$\pi$ (K∈ Z)}$
Giải thích các bước giải:
$\text{4sinx + 3cosx = 5}$
⇔ $\text{$\dfrac{4}{5}$ sinx +$\dfrac{3}{5}$ cosx = 1}$
Đặt: $\text{$\left \{ {{cosx=\dfrac{4}{5} } \atop {sinx=\dfrac{3}{5}}} \right.$ }$
⇒$\text{sinx.cos$\alpha$ + cosx.sin$\alpha$ = 1}$
⇒$\text{sin (x + $\alpha$)=1 }$
⇒$\text{x+ $\alpha$ = $\dfrac{\pi}{2}$+ k2$\pi$ }$
⇒$\text{x = $\dfrac{\pi}{2}$ – $\alpha$+ k2$\pi$ (K∈ Z)}$
$4\sin x+3\cos x=5$
$\Leftrightarrow \dfrac{4}{5}\sin x+\dfrac{3}{5}\cos x=1$
Đặt $\cos\alpha=\dfrac{4}{5},\sin\alpha=\dfrac{3}{5}$
$\Rightarrow \sin(x+\alpha)=1$
$\Leftrightarrow x+\alpha=\dfrac{\pi}{2}+k2\pi$
$\Leftrightarrow x=-\alpha+\dfrac{\pi}{2}+k2\pi$