Giải giúp mik 2 bài cần gấp vs ạ Question Giải giúp mik 2 bài cần gấp vs ạ in progress 0 Môn Toán Helga 4 years 2020-11-01T17:05:29+00:00 2020-11-01T17:05:29+00:00 1 Answers 53 views 0
Answers ( )
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
1,\\
a,\\
DKXD:\,\,\,\left\{ \begin{array}{l}
x \ge 0\\
x \ne 1
\end{array} \right.\\
B = \dfrac{1}{{2\sqrt x – 2}} – \dfrac{1}{{2\sqrt x + 2}} + \dfrac{{\sqrt x }}{{1 – x}}\\
= \dfrac{1}{{2\left( {\sqrt x – 1} \right)}} – \dfrac{1}{{2\left( {\sqrt x + 1} \right)}} – \dfrac{{\sqrt x }}{{x – 1}}\\
= \dfrac{1}{{2\left( {\sqrt x – 1} \right)}} – \dfrac{1}{{2\left( {\sqrt x + 1} \right)}} – \dfrac{{\sqrt x }}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}\\
= \dfrac{{\left( {\sqrt x + 1} \right) – \left( {\sqrt x – 1} \right) – 2\sqrt x }}{{2\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}\\
= \dfrac{{ – 2\sqrt x + 2}}{{2\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}\\
= \dfrac{{ – 2\left( {\sqrt x – 1} \right)}}{{2\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}\\
= \dfrac{{ – 1}}{{\sqrt x + 1}}\\
b,\\
x = 3 \Rightarrow B = \dfrac{{ – 1}}{{\sqrt 3 + 1}} = \dfrac{{ – 1.\left( {\sqrt 3 – 1} \right)}}{{\left( {\sqrt 3 – 1} \right)\left( {\sqrt 3 + 1} \right)}} = \dfrac{{1 – \sqrt 3 }}{{3 – 1}} = \dfrac{{1 – \sqrt 3 }}{2}\\
c,\\
A = – \dfrac{1}{{\sqrt x + 1}} < 0,\,\,\,\forall x \ge 0,x \ne 1\\
\Rightarrow \left| A \right| = \dfrac{1}{2} \Leftrightarrow A = – \dfrac{1}{2}\\
\Leftrightarrow – \dfrac{1}{{\sqrt x + 1}} = – \dfrac{1}{2}\\
\Leftrightarrow \sqrt x + 1 = 2\\
\Leftrightarrow \sqrt x = 1\\
\Leftrightarrow x = 1\,\,\,\,\,\,\,\,\,\,\,\left( {L,\,\,\,x \ge 0,x \ne 1} \right)\\
2,\\
a,\\
DKXD:\,\,\,\,\left\{ \begin{array}{l}
x \ge 0\\
x \ne 4
\end{array} \right.\\
b,\\
P = \dfrac{{\sqrt x + 1}}{{\sqrt x – 2}} + \dfrac{{2\sqrt x }}{{\sqrt x + 2}} + \dfrac{{2 + 5\sqrt x }}{{4 – x}}\\
= \dfrac{{\sqrt x + 1}}{{\sqrt x – 2}} + \dfrac{{2\sqrt x }}{{\sqrt x + 2}} – \dfrac{{5\sqrt x + 2}}{{x – 4}}\\
= \dfrac{{\sqrt x + 1}}{{\sqrt x – 2}} + \dfrac{{2\sqrt x }}{{\sqrt x + 2}} – \dfrac{{5\sqrt x + 2}}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x + 2} \right) + 2\sqrt x \left( {\sqrt x – 2} \right) – \left( {5\sqrt x + 2} \right)}}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{\left( {x + 3\sqrt x + 2} \right) + \left( {2x – 4\sqrt x } \right) – \left( {5\sqrt x + 2} \right)}}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{3x – 6\sqrt x }}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{3\sqrt x \left( {\sqrt x – 2} \right)}}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{3\sqrt x }}{{\sqrt x + 2}}\\
c,\\
P = 2 \Leftrightarrow \dfrac{{3\sqrt x }}{{\sqrt x + 2}} = 2\\
\Leftrightarrow 3\sqrt x = 2\left( {\sqrt x + 2} \right)\\
\Leftrightarrow 3\sqrt x = 2\sqrt x + 4\\
\Leftrightarrow \sqrt x = 4\\
\Leftrightarrow x = 16\,\,\,\,\left( {t/m} \right)
\end{array}\)