g = 10 N/kg or 10 m/s2 A tennis ball of mass 0.2 kg drops from a height of 20 m. When it hits the ground, it bounces to a height of 14

Question

g = 10 N/kg or 10 m/s2
A tennis ball of mass 0.2 kg drops from a height of 20 m. When it hits the ground, it bounces to a height of 14 m.

Describe what happens next
What was the Potential Energy (EP) of the ball before it fell?
What was the efficiency of the bounce?
How fast will Danielle be moving as she reaches the bottom of the hill?

in progress 0
Orla Orla 4 days 2021-07-19T06:42:31+00:00 1 Answers 0 views 0

Answers ( )

    0
    2021-07-19T06:44:30+00:00

    Answer:

    a) U_{g} = 40\,J, b) \eta = 70\,\%, c) v = 20\,\frac{m}{s}

    Explanation:

    a) The initial potential energy is:

    U_{g} = (0.2\,kg)\cdot \left(10\,\frac{m}{s^{2}} \right)\cdot (20\,m)

    U_{g} = 40\,J

    b) The efficiency of the bounce is:

    \eta = \left(\frac{14\,m}{20\,m} \right)\times 100\,\%

    \eta = 70\,\%

    c) The final speed of Danielle right before reaching the bottom of the hill is determined from the Principle of Energy Conservation:

    K = U_{g}

    U_{g} = \frac{1}{2}\cdot m \cdot v^{2}

    v = \sqrt{\frac{2\cdot U_{g}}{m} }

    v = \sqrt{\frac{2\cdot (40\,J)}{0.2\,kg} }

    v = 20\,\frac{m}{s}

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )