Share
For helium, let’s label the emission wavelengths, λ(nf,ni) where nf and ni are, respectively, the principal quantum numbers of the final and
Question
For helium, let’s label the emission wavelengths, λ(nf,ni) where nf and ni are, respectively, the principal quantum numbers of the final and the initial states. Calculate the following emission wavelengths: λ(3,4), λ(4,6), λ(4,7) λ(4,8) and λ(4,9).
in progress
0
Physics
1 year
2021-08-31T15:03:29+00:00
2021-08-31T15:03:29+00:00 1 Answers
10 views
0
Answers ( )
Answer:
Explanation:
Using Rydberg equation
[tex]\frac{1}{\lambda} = -R(\frac{1}{n_f^2} – \frac{1}{n_i^2}) = R(\frac{1}{n_i^2} – \frac{1}{n_f^2})[/tex]
where;
R is Rydberg equation = 1.097 x 10⁷ m⁻¹
For λ(3,4)
[tex]\frac{1}{\lambda} = R(\frac{1}{n_i^2} – \frac{1}{n_f^2})\\\\\frac{1}{\lambda} = 1.097*10^7(\frac{1}{3^2} – \frac{1}{4^2}) = 533263.889 \ m^{-1}\\\\\lambda = 1875.24 \ nm[/tex]
For λ(4,6)
[tex]\frac{1}{\lambda} = R(\frac{1}{n_i^2} – \frac{1}{n_f^2})\\\\\frac{1}{\lambda} = 1.097*10^7(\frac{1}{4^2} – \frac{1}{6^2}) = 380902.778 \ m^{-1}\\\\\lambda = 2625.34 \ nm[/tex]
For λ(4,7)
[tex]\frac{1}{\lambda} = R(\frac{1}{n_i^2} – \frac{1}{n_f^2})\\\\\frac{1}{\lambda} = 1.097*10^7(\frac{1}{4^2} – \frac{1}{7^2}) = 3461747.45 \ m^{-1}\\\\\lambda = 2165.69 \ nm[/tex]
For λ(4,8)
[tex]\frac{1}{\lambda} = R(\frac{1}{n_i^2} – \frac{1}{n_f^2})\\\\\frac{1}{\lambda} = 1.097*10^7(\frac{1}{4^2} – \frac{1}{8^2}) = 514218.75 \ m^{-1}\\\\\lambda = 1944.70 \ nm[/tex]
For λ(4,9)
[tex]\frac{1}{\lambda} = R(\frac{1}{n_i^2} – \frac{1}{n_f^2})\\\\\frac{1}{\lambda} = 1.097*10^7(\frac{1}{4^2} – \frac{1}{9^2}) = 550192.90 \ m^{-1}\\\\\lambda = 1817.54 \ nm[/tex]