Find k so that the distance from (–3, –1) to (k, 5) is 10 units.

Question

Find k so that the distance from (–3, –1) to (k, 5) is 10 units.

in progress 0
Thu Giang 4 years 2021-08-17T19:11:07+00:00 1 Answers 12 views 0

Answers ( )

    0
    2021-08-17T19:12:12+00:00

    Answer:

    k = – 11, 5

    Step-by-step explanation:

    By distance formula:

     \sqrt{ \{ {k - ( - 3) \}}^{2}  +  \{5 - ( - 1) \}^{2} }  = 10 \\  \\  \sqrt{ {(k + 3)}^{2}  +  {(5 + 1)}^{2} }  = 10 \\  \\  \sqrt{ {(k + 3)}^{2}  +  {(6)}^{2} }  = 10 \\  \\ \sqrt{ {(k + 3)}^{2}  +  36 }  = 10 \\  \\ (k + 3)^{2}  + 36 =  {10}^{2}  \\ ..(squaring \: both \: sides) \\  {k}^{2}  + 6k + 9 + 36 = 100 \\ {k}^{2}  + 6k + 45  -  100 = 0 \\  {k}^{2}  + 6k  - 55 = 0 \\ {k}^{2}  + 11k  - 5k - 55 = 0 \\ k(k + 11) - 5(k + 11) = 0 \\ (k + 11)(k - 5) = 0 \\ k + 11 = 0 \: or \: k - 5 = 0 \\ k =  - 11 \: or \: k = 5 \\  \\  \huge \red { \boxed{k =  \{  - 11, \: 5\}}}

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )