find from first principle the derivative of 3x+5/√x​

Question

find from first principle the derivative of 3x+5/√x​

in progress 0
Sapo 6 months 2021-07-24T02:09:10+00:00 1 Answers 4 views 0

Answers ( )

    0
    2021-07-24T02:10:19+00:00

    Answer:

    \displaystyle \frac{d}{dx} = \frac{3x - 5}{2x^\bigg{\frac{3}{2}}}

    General Formulas and Concepts:

    Algebra I

    • Exponential Rule [Powering]:                                                                          \displaystyle (b^m)^n = b^{m \cdot n}
    • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
    • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

    Calculus

    Derivatives

    Derivative Notation

    Derivative Property [Addition/Subtraction]:                                                            \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]

    Basic Power Rule:

    1. f(x) = cxⁿ
    2. f’(x) = c·nxⁿ⁻¹

    Derivative Rule [Quotient Rule]:                                                                               \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

    Step-by-step explanation:

    Step 1: Define

    Identify

    \displaystyle \frac{3x + 5}{\sqrt{x}}

    Step 2: Differentiate

    1. Rewrite [Exponential Rule – Root Rewrite]:                                                     \displaystyle \frac{3x + 5}{x^\bigg{\frac{1}{2}}}
    2. Quotient Rule:                                                                                                   \displaystyle \frac{d}{dx} = \frac{(x^\bigg{\frac{1}{2}})\frac{d}{dx}[3x + 5] - \frac{d}{dx}[x^\bigg{\frac{1}{2}}](3x + 5)}{(x^\bigg{\frac{1}{2}})^2}
    3. Simplify [Exponential Rule – Powering]:                                                          \displaystyle \frac{d}{dx} = \frac{(x^\bigg{\frac{1}{2}})\frac{d}{dx}[3x + 5] - \frac{d}{dx}[x^\bigg{\frac{1}{2}}](3x + 5)}{x}
    4. Basic Power Rule [Derivative Property – Addition/Subtraction]:                   \displaystyle \frac{d}{dx} = \frac{(x^\bigg{\frac{1}{2}})(3x^{1 - 1} + 0) - (\frac{1}{2}x^\bigg{\frac{1}{2} - 1})(3x + 5)}{x}
    5. Simplify:                                                                                                             \displaystyle \frac{d}{dx} = \frac{3x^\bigg{\frac{1}{2}} - (\frac{1}{2}x^\bigg{\frac{-1}{2}})(3x + 5)}{x}
    6. Rewrite [Exponential Rule – Rewrite]:                                                              \displaystyle \frac{d}{dx} = \frac{3x^\bigg{\frac{1}{2}} - (\frac{1}{2x^{\frac{1}{2}}})(3x + 5)}{x}
    7. Rewrite [Exponential Rule – Root Rewrite]:                                                     \displaystyle \frac{d}{dx} = \frac{3\sqrt{x} - (\frac{1}{2\sqrt{x}})(3x + 5)}{x}
    8. Simplify [Rationalize]:                                                                                       \displaystyle \frac{d}{dx} = \frac{3x - 5}{2x^\bigg{\frac{3}{2}}}

    Topic: AP Calculus AB/BC (Calculus I/I + II)

    Unit: Derivatives

    Book: College Calculus 10e

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )