chứng minh bất đẳng thức: m^2 + n^2 + p^2 + q^2 + 1 >= m(n + p + q + 1)

Question

chứng minh bất đẳng thức: m^2 + n^2 + p^2 + q^2 + 1 >= m(n + p + q + 1)

in progress 0
Philomena 2 tháng 2021-04-22T19:30:46+00:00 1 Answers 8 views 0

Answers ( )

  1. `m^2+n^2+p^2+q^2+1>=m(n+p+q+1)`

    Ta có :

    `m^2+n^2+p^2+q^2+1>=m(n+p+q+1)`
    `<=>((m^2)/4-mn+n^2)+((m^2)/4-mp+p^2)+((m^2)/4-mq+q^2)+((m^2)/4-m+1)>=0`

    `<=>(m/2-n)^2+(m/2-p)^2+(m/2-q)^2+(m/2-1)^2>=0` ( luôn đúng )
    Dấu “=” xảy ra khi : 

    $\begin{cases}\dfrac{m}{2}-n=0\\\dfrac{m}{2}-p=0\\\dfrac{m}{2}-q=0\\\dfrac{m}{2}-1=0\end{cases}$`=>` $\begin{cases}n=\dfrac{m}{2}\\p=\dfrac{m}{2}\\q=\dfrac{m}{2}\\m=2\end{cases}$ `=>` $\begin{cases}m=2\\n=1\\q=1\\p=1\end{cases}$

    Vậy `m^2+n^2+p^2+q^2+1>=m(n+p+q+1)-> ( đpcm)`

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )