Cho parabol (P) có phương trình f(x) =ax^2 +bx+c tiếp xúc với đường thẳng d:y=x+3 tại điểm A(1:4), tung độ đỉnh của parabol là y= 25/8. Tính giá trị

Question

Cho parabol (P) có phương trình f(x) =ax^2 +bx+c tiếp xúc với đường thẳng d:y=x+3 tại điểm A(1:4), tung độ đỉnh của parabol là y= 25/8. Tính giá trị của biểu thức N= 3a+b+9c
A.N=6.
B.N= 0.
C.N= 2.
D.N= 8.

câu 45 làm sao vậy giúp mình với
cho-parabol-p-co-phuong-trinh-f-a-2-b-c-tiep-uc-voi-duong-thang-d-y-3-tai-diem-a-1-4-tung-do-din

in progress 0
bonexptip 1 year 2020-11-29T06:09:19+00:00 2 Answers 483 views 0

Answers ( )

    0
    2020-11-29T06:11:12+00:00

    Đáp án:

     

    Giải thích các bước giải:

     A(1,4)∈(P) nên thay vào pt ta có:

    4=a+b+c

    tung độ đỉnh parabol là y=$\frac{{ – \Delta }}{{4a}} = \frac{{ – ({b^2} – 4ac)}}{{4a}} = \frac{{25}}{8}$

    Cho parabol cắt (d) ta có:

    $\begin{array}{l} a{x^2} + bx + c = x + 3\\  \Leftrightarrow a{x^2} + (b – 1)x + (c – 3) = 0 \end{array}$

    pt trên có 1 nghiệm duy nhất

    => Δ=${(b – 1)^2} – 4a(c – 3) = 0$

    Giải hê 3 phương trình 3 ẩn rồi tìm ra a,b,c và tính tổng N em nhé!

    0
    2020-11-29T06:11:26+00:00

    Để tìm câu trả lời chính xác các em hãy tham khảo tung độ đỉnh của parabol các nguồn hoc24.vn, lazi.vn, hoidap247.com để thầy cô và các chuyên gia hỗ trợ các em nhé!

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )