Câu cuối cùng ????????????????????????????????????????????????????
Lm hết
Câu cuối cùng ???????????????????????????????????????????????????? Lm hết
Share
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Philomena
Đáp án:
Nick
Đáp án:
Giải thích các bước giải:
Câu 5:
`⇔ \frac{(a+b+c)^2}{h_a^2+h_b^2+h_c^2}ge4`
Ta có:
\(S=pr=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)
\(\Leftrightarrow p^2r^2=p\left(p-a\right)\left(p-b\right)\left(p-c\right)\)
\(\Leftrightarrow r^2=\dfrac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}\)
\(\Leftrightarrow\dfrac{1}{r^2}=\dfrac{p}{\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\dfrac{1}{\left(p-a\right)\left(p-b\right)}+\dfrac{1}{\left(p-b\right)\left(p-c\right)}+\dfrac{1}{\left(p-c\right)\left(p-a\right)}\)
\(\Leftrightarrow\dfrac{1}{r^2}=4\left(\dfrac{1}{\left(b+c-a\right)\left(c+a-b\right)}+\dfrac{1}{\left(c+a-b\right)\left(a+b-c\right)}+\dfrac{1}{\left(a+b-c\right)\left(b+c-a\right)}\right)\)
\(\Leftrightarrow\dfrac{1}{4r^2}=\dfrac{1}{c^2-\left(a-b\right)^2}+\dfrac{1}{a^2-\left(b-c\right)^2}+\dfrac{1}{b^2-\left(c-a\right)^2}\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
\(\Leftrightarrow\dfrac{1}{r^2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)}\ge4\left(1\right)\)
Ta lại có:
\(S=\dfrac{ah_a}{2}=pr=\dfrac{r\left(a+b+c\right)}{2}\)
\(\Leftrightarrow h_a=\dfrac{r\left(a+b+c\right)}{a}\)
\(\Leftrightarrow h_a^2=\dfrac{r^2\left(a+b+c\right)^2}{a^2}\left(2\right)\)
Tương tự ta có:
\(\left\{{}\begin{matrix}h_b^2=\dfrac{r^2\left(a+b+c\right)^2}{b^2}\left(3\right)\\h_c^2=\dfrac{r^2\left(a+b+c\right)^2}{c^2}\left(4\right)\end{matrix}\right.\)
Từ (2), (3), (4) ta có:
\(h_a^2+h_b^2+h_c^2=r^2\left(a+b+c\right)^2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)
\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{h_a^2+h_b^2+h_c^2}=\dfrac{1}{r^2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)}\ge4\)
`⇔ h_a^2+h_b^2+h_c^2 \le \frac{1}{4}(a+b+c)^2` (đpcm)