Bài 3: Cho ad = bc CMR : $\frac{a^{3}+b^{3}}{c^{3}+d^{3}}$ = $(\frac{a+b}{c+d})^{3}$

Question

Bài 3: Cho ad = bc
CMR : $\frac{a^{3}+b^{3}}{c^{3}+d^{3}}$ = $(\frac{a+b}{c+d})^{3}$

in progress 0
Amity 9 months 2020-10-31T17:38:10+00:00 2 Answers 65 views 0

Answers ( )

    0
    2020-10-31T17:39:34+00:00

    $ad = bc$

    $\to \dfrac{a}{c} = \dfrac{b}{d}$

    $\to \dfrac{a}{c} = \dfrac{b}{d} = \dfrac{a +b}{c + d}$

    $\to \dfrac{a^3}{c^3} = \dfrac{b^3}{d^3} = \left(\dfrac{a+b}{c+d}\right)^3 = \dfrac{a^3 + b^3}{c^3 + d^3}$

    0
    2020-10-31T17:39:38+00:00

    Đáp án:

     

    Giải thích các bước giải:

      

    bai-3-cho-ad-bc-cmr-frac-a-3-b-3-c-3-d-3-frac-a-b-c-d-3

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )