Share
A spaceship with a mass of 5.30 104 kg is traveling at 5.75 103 m/s relative to a space station. What mass will the ship have after it fires
Question
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Answers ( )
Answer:
Mass needed to fire is [tex]3 \times 10^4 kg[/tex]
Explanation:
Mass of the spaceship [tex]m_{0} = 5.30 \times 10^4 kg[/tex]
Initial velocity of the spaceship[tex]v_{0} = 5.75 \times 10^3 m/s[/tex]
Final velocity of the spaceship [tex]v_{f} = 8.39 \times 10^3 m/s[/tex]
Take exhaust velocity [tex]u = 4.6\times 10^3 m/s[/tex]
The velocity of the spaceship in the space is
[tex]v_{f}=v_{0}+u\times ln(\frac{m_{0}}{m} )\\8.39 \times 10^3= 5.75 \times 10^3+ 4.6 \times 10^3 \times ln(\frac{5.30 \times 10^4}{m} )\\8.39 \times 10^3-5.75 \times 10^3= 4.6 \times 10^3 \times ln(\frac{5.30 \times 10^4}{m} )\\2.64 \times 10^3=4.6 \times 10^3 \times ln(\frac{5.30 \times 10^4}{m} )\\\frac{2.64 \times 10^3}{4.6 \times 10^3} = ln(\frac{5.30 \times 10^4}{m} )\\0.57=ln(\frac{5.30 \times 10^4}{m} )\\e^{0.57}=\frac{5.30 \times 10^4}{m}\\m=\frac{5.30 \times 10^4}{1.768} \\m=3 \times 10^4 kg[/tex]
Mass needed to fire is [tex]3 \times 10^4 kg[/tex]