A series circuit has a capacitor of 0.25 × 10−6 F, a resistor of 5 × 103 Ω, and an inductor of 1 H. The initial charge on the capacitor is z

Question

A series circuit has a capacitor of 0.25 × 10−6 F, a resistor of 5 × 103 Ω, and an inductor of 1 H. The initial charge on the capacitor is zero. If a 12-volt battery is connected to the circuit and the circuit is closed at t = 0, determine the charge on the capacitor at any time t

in progress 0
RobertKer 4 years 2021-08-23T03:48:35+00:00 1 Answers 5 views 0

Answers ( )

    0
    2021-08-23T03:50:19+00:00

    Answer:

    q=10^{-6}(e^{-4000t}-4e^{-1000t}+3)C

    Explanation:

    Given that L=1H, R=5000\Omega, \ C=0.25\times10^{-6}F, \ \ E(t)=12V, we use Kirchhoff’s 2nd Law to determine the sum of voltage drop as:

    E(t)=\sum{Voltage \ Drop}\\\\L\frac{d^2q}{dt^2}+R\frac{dq}{dt}+\frac{1}{C}q=E(t)\\\\\\\frac{d^2q}{dt^2}+5000\frac{dq}{dt}+\frac{1}{0.25\times10^{-6}}q=12\\\\\frac{d^2q}{dt^2}+5000\frac{dq}{dt}+4000000q=12\\\\m^2+5000m+4000000=0\\\\(m+4000)(m+1000)=0\\\\m=-4000  \ or \ m=-1000\\\\q_c=c_1e^{-4000t}+c_2e^{-1000t}

    #To find the particular solution:

    Q(t)=A,\ Q\prime(t)=0,Q\prime \prime(t)=0\\\\0+0+4000000A=12\\\\A=3\times10^{-6}\\\\Q(t)=3\times10^{-6},\\\\q=q_c+Q(t)\\\\q=c_1e^{-4000t}+c_2e^{-1000t}+3\times10^{-6}\\\\q\prime=-4000c_1e^{-4000t}-1000c_2e^{-1000t}\\q\prime(0)=0\\\\-4000c_1-1000c_2=0\\c_1+c_2+3\times10^{-6}=0\\\\#solving \ simultaneously\\\\c_1=10^{-6},c_2=-4\times10^{-6}\\\\q=10^{-6}e^{-4000t}-4\times10^{-6}e^{-1000t}+3\times10^{-6}\\\\q=10^{-6}(e^{-4000t}-4e^{-1000t}+3)C

    Hence the charge at any time, t is q=10^{-6}(e^{-4000t}-4e^{-1000t}+3)C

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )