Share
A rope connects boat A to boat B. Boat A starts from rest and accelerates to a speed of 9.5 m/s in a time t = 47 s. The mass of boat B is 54
Question
A rope connects boat A to boat B. Boat A starts from rest and accelerates to a speed of 9.5 m/s in a time t = 47 s. The mass of boat B is 540 kg. Assuming a constant frictional force of 230 N acts on boat B, what is the magnitude of the tension in the rope that connects the boats during the time that boat A is accelerating?
in progress
0
Physics
5 months
2021-08-09T06:53:24+00:00
2021-08-09T06:53:24+00:00 1 Answers
0 views
0
Answers ( )
Answer: 339.148N
Explanation:
Data
Time (t) = 47s
U = 0m/s
V = 9.5m/s
Mass of B = 540kg
Frictional force on B = 230N
Both boats are connected so if A moves, B moves too.
Acceleration of boat A =?
Using equation of motion,
V = u + at
9.5 = 0 + a*47
a = 9.5 / 47
a = 0.2021 m/s²
The force required to accelerate boat B since it’s the same force moving both boats =?
F = Mass * acceleration
F = 540 * 0.2021 = 109.14N
A frictional force of 230N exists on boat B
Total force (Tension) = frictional force + normal force = (109.15 + 230)N = 339.148N