Share
A mass MM uniform solid cylinder of radius RR and a mass MM thin uniform spherical shell of radius RR roll without slipping. If both object
Question
A mass MM uniform solid cylinder of radius RR and a mass MM thin uniform spherical shell of radius RR roll without slipping. If both objects have the same kinetic energy, what is the ratio of the speed of the cylinder to the speed of the spherical shell
in progress
0
Physics
1 year
2021-09-03T03:46:24+00:00
2021-09-03T03:46:24+00:00 1 Answers
84 views
0
Answers ( )
Answer:
vcyl / vsph = 1.05
Explanation:
[tex]K_{trans} = \frac{1}{2}* M* v_{cm} ^{2} (1)[/tex]
[tex]K_{rot} = \frac{1}{2}* I* \omega ^{2} (2)[/tex]
[tex]v = \omega * R (3)[/tex]
[tex]K_{rot} = \frac{1}{2}* \frac{1}{2} M*R^{2} * \frac{v_{cmc} ^{2}}{R^{2}} = \frac{1}{4}* M* v_{cmc}^{2} (5)[/tex]
[tex]K_{cyl} = \frac{1}{2}* M* v_{cmc} ^{2} +\frac{1}{4}* M* v_{cmc}^{2} = \frac{3}{4}* M* v_{cmc} ^{2} (6)[/tex]
[tex]I_{sph} = \frac{2}{3} * M* R^{2} (7)[/tex]
[tex]K_{rot} = \frac{1}{2}* \frac{2}{3} M*R^{2} * \frac{v_{cms} ^{2}}{R^{2}} = \frac{1}{3}* M* v_{cms}^{2} (8)[/tex]
[tex]K_{sph} = \frac{1}{2}* M* v_{cms} ^{2} +\frac{1}{3}* M* v_{cms}^{2} = \frac{5}{6}* M* v_{cms} ^{2} (9)[/tex]
[tex]\frac{v_{cmc}}{v_{cms}} =\sqrt{\frac{10}{9} } = 1.05 (10)[/tex]