4sin^x + 4cosx -1 =0

Question

4sin^x + 4cosx -1 =0

in progress 0
Kiệt Gia 1 year 2020-10-31T13:23:08+00:00 2 Answers 235 views 0

Answers ( )

    0
    2020-10-31T13:24:27+00:00

    `4sin² x + 4cosx – 1 = 0`

    `<=> 4(1 – cos² x) + 4cos x – 1 = 0`

    `<=> 4 – 4cos² x + 4cos x – 1 = 0`

    `<=>` \(\left[ \begin{array}{l}cos x = \dfrac{3}{2} (l)\\cos x = -\dfrac{1}{2}\end{array} \right.\) 

    `=> cos x = -1/2`

    `<=> x = ±(2π)/3 + k2π` `(k ∈ ZZ)`

    0
    2020-10-31T13:25:04+00:00

    $4\sin^2x+4\cos x-1=0$

    $\Leftrightarrow 4-4\cos^2x+4\cos x-1=0$

    $\Leftrightarrow -4\cos^2x+4\cos x +3=0$

    $\Leftrightarrow \cos x=1,5$ (loại), $\cos x=-0,5$ (TM)

    $\cos x=-0,5\Leftrightarrow x=\pm\dfrac{2\pi}{3}+k2\pi$

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )