Đáp án: Áp dụng tính chất của dãy tỉ số bằng nhau $\begin{array}{l}1)\dfrac{x}{y} = \dfrac{6}{7}\\ \Rightarrow \dfrac{x}{6} = \dfrac{y}{7} = \dfrac{{3y}}{{21}} = \dfrac{{x + 3y}}{{6 + 21}} = \dfrac{9}{{27}} = \dfrac{1}{3}\\ \Rightarrow \left\{ \begin{array}{l}x = 6.\dfrac{1}{3} = 2\\y = 7.\dfrac{1}{3} = \dfrac{7}{3}\end{array} \right.\\2)8x = 3y\\ \Rightarrow \dfrac{x}{3} = \dfrac{y}{8} = \dfrac{{0,5x}}{{3.0,5}}\\ = \dfrac{{0,5x}}{{1,5}} = \dfrac{{0,5x – y}}{{1,5 – 8}} = \dfrac{{13}}{{ – 6,5}} = – 2\\ \Rightarrow \left\{ \begin{array}{l}x = 3.\left( { – 2} \right) = – 6\\y = 8.\left( { – 2} \right) = – 16\end{array} \right.\\3)x:\left( {2y} \right):z = 4:5:6\\ \Rightarrow \dfrac{x}{4} = \dfrac{{2y}}{5} = \dfrac{z}{6} = \dfrac{{x + 2y + z}}{{4 + 5 + 6}} = \dfrac{{30}}{{15}} = 2\\ \Rightarrow \left\{ \begin{array}{l}x = 8\\2y = 10\\z = 12\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 8\\y = 5\\z = 12\end{array} \right.\\4)\dfrac{x}{5} = \dfrac{{2y}}{3} = \dfrac{{5z}}{6} = \dfrac{{x + 2y}}{{5 + 3}} = \dfrac{{ – 10,6}}{8} = – 1,325\\ \Rightarrow \left\{ \begin{array}{l}x = – 1,325.5 = – 6,625\\y = \dfrac{{ – 1,325.3}}{2} = – 1,9875\\z = \dfrac{{ – 1,325.6}}{5} = – 1,59\end{array} \right.\end{array}$ Log in to Reply
Đáp án:
Áp dụng tính chất của dãy tỉ số bằng nhau
$\begin{array}{l}
1)\dfrac{x}{y} = \dfrac{6}{7}\\
\Rightarrow \dfrac{x}{6} = \dfrac{y}{7} = \dfrac{{3y}}{{21}} = \dfrac{{x + 3y}}{{6 + 21}} = \dfrac{9}{{27}} = \dfrac{1}{3}\\
\Rightarrow \left\{ \begin{array}{l}
x = 6.\dfrac{1}{3} = 2\\
y = 7.\dfrac{1}{3} = \dfrac{7}{3}
\end{array} \right.\\
2)8x = 3y\\
\Rightarrow \dfrac{x}{3} = \dfrac{y}{8} = \dfrac{{0,5x}}{{3.0,5}}\\
= \dfrac{{0,5x}}{{1,5}} = \dfrac{{0,5x – y}}{{1,5 – 8}} = \dfrac{{13}}{{ – 6,5}} = – 2\\
\Rightarrow \left\{ \begin{array}{l}
x = 3.\left( { – 2} \right) = – 6\\
y = 8.\left( { – 2} \right) = – 16
\end{array} \right.\\
3)x:\left( {2y} \right):z = 4:5:6\\
\Rightarrow \dfrac{x}{4} = \dfrac{{2y}}{5} = \dfrac{z}{6} = \dfrac{{x + 2y + z}}{{4 + 5 + 6}} = \dfrac{{30}}{{15}} = 2\\
\Rightarrow \left\{ \begin{array}{l}
x = 8\\
2y = 10\\
z = 12
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
x = 8\\
y = 5\\
z = 12
\end{array} \right.\\
4)\dfrac{x}{5} = \dfrac{{2y}}{3} = \dfrac{{5z}}{6} = \dfrac{{x + 2y}}{{5 + 3}} = \dfrac{{ – 10,6}}{8} = – 1,325\\
\Rightarrow \left\{ \begin{array}{l}
x = – 1,325.5 = – 6,625\\
y = \dfrac{{ – 1,325.3}}{2} = – 1,9875\\
z = \dfrac{{ – 1,325.6}}{5} = – 1,59
\end{array} \right.
\end{array}$