Question In ΔOPQ, q = 110 inches, o = 970 inches and ∠P=167°. Find the area of ΔOPQ, to the nearest square inch.
Answer: [tex]Area = 12004[/tex] square inches Step-by-step explanation: Given [tex]q = 110[/tex] [tex]o = 970[/tex] [tex]\angle P =167[/tex] Required The area of the triangle To do this, we use: [tex]Area = \frac{1}{2} * o * q * sin(P)[/tex] So, we have: [tex]Area = \frac{1}{2} * 970 * 110 * sin(167^\circ)[/tex] [tex]Area = \frac{1}{2} * 970 * 110 * 0.2250[/tex] [tex]Area = 12003.75[/tex] Approximate [tex]Area = 12004[/tex] Log in to Reply
Answer:
[tex]Area = 12004[/tex] square inches
Step-by-step explanation:
Given
[tex]q = 110[/tex]
[tex]o = 970[/tex]
[tex]\angle P =167[/tex]
Required
The area of the triangle
To do this, we use:
[tex]Area = \frac{1}{2} * o * q * sin(P)[/tex]
So, we have:
[tex]Area = \frac{1}{2} * 970 * 110 * sin(167^\circ)[/tex]
[tex]Area = \frac{1}{2} * 970 * 110 * 0.2250[/tex]
[tex]Area = 12003.75[/tex]
Approximate
[tex]Area = 12004[/tex]
Answer:
12001
Step-by-step explanation: