Question

Find the length and width (in feet) of a rectangle that has the given area and a minimum perimeter. Area: 25 square feet

Answers

  1. Length = 5 ft & width = 5 ft of a rectangle that has the given area .
                           
    What is called rectangle?
    • A Rectangle is a four sided-polygon, having all the internal angles equal to 90 degrees.
    • The two sides at each corner or vertex, meet at right angles.
    • The opposite sides of the rectangle are equal in length which makes it different from a square.
    Let the length and width of rectangle be x feet and y feet respectively.
    Give       area = 25 feet²
                    x y = 25 feet²
                     y = 25/x feet²   ………………1
    Now let perimeter is p
    then    p = 2 (x+y) = 2x + 2y
               p = 2x + 2 × 25/x
               P = 2X + 50/x
    diffrentiating w.r.t. x
                p’  = 2 – 50/x² ……………..2
    putting p’ = 0 to find critical point
            2 –  50/x²   = 0
              x²  = 25
               x  = 5                         [ x ≠ 5 ∴ length can not be negative ]
    Now,    p” = 0 + 100/ x³                       from (2)
    checking value of p” at critical point
          p” at x = 5        = 100/(x)³         > 0
    Hence, perimeter is minimum at x = 5 ft
    putting       x = 5  in equation 1
                      y = 1
    Hence,          length = 5 ft
                           width = 5 ft
    Learn more about rectangle
    brainly.com/question/20693059
    #SPJ4

    Reply

Leave a Comment