Question

∠A and \angle B∠B are complementary angles. If m\angle A=(8x+27)^{\circ}∠A=(8x+27)

and m\angle B=(6x-21)^{\circ}∠B=(6x−21)

, then find the measure of \angle B∠B.

Answers

  1. Answer:

    16

    Step-by-step explanation:

    (3x+9)+(6x+27)=

    (3x+9)+(6x+27)=

    \,\,180

    180

    supplementary angles add up to 180

    3x+9+6x+27=

    3x+9+6x+27=

    \,\,180

    180

    Drop parentheses

    9x+36=

    9x+36=

    \,\,180

    180

    Combine like terms

    -36\phantom{=}

    −36=

    \,\,-36

    −36

    9x=

    9x=

    \,\,144

    144

    \frac{9x}{9}=

    9

    9x

    ​  

    =

    \,\,\frac{144}{9}

    9

    144

    ​  

     

    Divide both sides by 9

    x=

    x=

    \,\,\color{green}{16}

    16

    \text{Find the measure of }\angle A:

    Find the measure of ∠A:

    \text{m}\angle A=

    m∠A=

    \,\,3x+9

    3x+9

    Given

    \text{m}\angle A=

    m∠A=

    \,\,3(\color{green}{16})+9

    3(16)+9

    Plug in x

    \text{m}\angle A=

    m∠A=

    \,\,48+9

    48+9

    Multiply

    \text{m}\angle A=

    m∠A=

    \,\,57

    57

    Combine

  2. Answer:

    ∠ B = 15°

    Step-by-step explanation:

    Complementary angles sum to 90° , that is

    ∠ A + ∠ B = 90 , substitute values

    8x + 27 + 6x – 21 = 90

    14x + 6 = 90 ( subtract 6 from both sides )

    14x = 84 ( divide both sides by 14 )

    x = 6

    Thus

    ∠ B = 6x – 21 = 6(6) – 21 = 36 – 21 = 15°

Leave a Comment