A 0.250 kgkg toy is undergoing SHM on the end of a horizontal spring with force constant 300 N/mN/m. When the toy is 0.0120 mm from its equilibrium position, it is observed to have a speed of 0.400 m/s.Find
(a) the total energy of the object at any point in its motion,
(b) the amplitude of the motion, and (c) the maximum speed attained by the object during its motion.
Answer:
(a) The total energy of the object at any point in its motion is 0.0416 J
(b) The amplitude of the motion is 0.0167 m
(c) The maximum speed attained by the object during its motion is 0.577 m/s
Explanation:
Given;
mass of the toy, m = 0.25 kg
force constant of the spring, k = 300 N/m
displacement of the toy, x = 0.012 m
speed of the toy, v = 0.4 m/s
(a) The total energy of the object at any point in its motion
E = ¹/₂mv² + ¹/₂kx²
E = ¹/₂ (0.25)(0.4)² + ¹/₂ (300)(0.012)²
E = 0.0416 J
(b) the amplitude of the motion
E = ¹/₂KA²
[tex]A = \sqrt{\frac{2E}{K} } \\\\A = \sqrt{\frac{2*0.0416}{300} } \\\\A = 0.0167 \ m[/tex]
(c) the maximum speed attained by the object during its motion
[tex]E = \frac{1}{2} mv_{max}^2\\\\v_{max} = \sqrt{\frac{2E}{m} } \\\\v_{max} = \sqrt{\frac{2*0.0416}{0.25} } \\\\v_{max} = 0.577 \ m/s[/tex]